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The regular twinning in ceramics and metals below the temperature of a ferroelastic or 
ferroelectric structural phase transition is a result of energy minimization. Here homogeneous 
elastic energy is reduced at the expense of twin wall energy. The twin density depends on the 
grain size g; under homogeneous stress the total elastic energy of a grain increases oc g3. Any 
kind of twin wall, however, increases oc g2. Below the intersection of these two curves, stress 
reduction by twinning cannot lower the total energy. Thus there is a critical grain size below 
which twinning should not occur. Above this limit the width of the twin lamellae increases 
0r gl/2. The shape of the grain then adjusts to the surroundings in two dimensions only. 
Above another larger critical grain size more complex interfaces with higher surface energy are 
created, which allow stress relief in the third dimension. A semi-quantitative model is 
developed with the example of BaTiO 3 ceramic, of which the domain patterns are well known. 
It is representative for many ceramics. The high T c superconductor YBa2Cu3074 also twins 
according to the same law. For three-dimensional adjustment here a proper interface is 
missing. 

1. I n t r o d u c t i o n  
Many reviews have been published on various aspects 
of twinning and on the nature of  twin boundaries of  
minerals and of metals (e.g. [1-3]). In particular, twin- 
ning as a consequence of a phase transformation 
which leads to a small structural change of the lattice 
cell has been described extensively as mechanical twin- 
ning [1, 4] or as martensitic t ransformation [3]. 

Aizu's [5, 6] definition of the ferroelastic phase tran- 
sition overlaps to a great extent with the generalized 
martensitic transition as mainly used by scientists in 
metallurgy. Metals with martensitic transitions often 
show stress-strain hysteresis curves (e.g. [2, 7]) as 
required by Aizu for ferroelastic materials. 

Transitions which are assisted by diffusion in some 
cases also cause twinning. An example is the 
te t ragonal-or thorhombic  (t-o) transition of the high- 
Tc superconductor YBa2Cu307 0 which requires dif- 
fusion of oxygen into the lattice (e.g. [8, 9]). 

Numerous polycrystalline metals and ceramics 
which undergo the transformations described above 
have a simple lamellar twinning or a banded twin 
structure as shown schematically in Fig. 1. In this 
paper these structures will be discussed as favourable 
states of  low energy. 

The physical origin of  this mechanical twinning has 
been ascribed by most  authors (e.g. [1]) to a reduction 
of the mechanical stress fields. Thus mechanical twin- 
ning in ferroelastic ceramics or related materials can 
be compared with ferromagnetic or ferroelectric 
domain formation. In the magnetic case, magnetic 
field energy is reduced by the existence of magnetic 
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domains at the expense of domain wall energy such 
that the sum of the two becomes a minimum. In the 
ferroelectric case the electric field energy is often 
reduced at the expense of domain wall energy in 
order to minimize the sum of the two. In ferroelastic 
materials it is the sum of elastic energy and domain 
wall or interface energy which becomes a minimum. 
The equilibrium configuration of the twin pattern, 
however, is established only if the walls have sufficient 
mobility or if the displaced atoms have sufficient time 
to establish or at least to at tempt to reach a thermo- 
dynamic equilibrium. 

The above comparison of the three groups is sim- 
plified because in the ferromagnetic and ferroelectric 
cases, in addition to the magnetic and electric fields, the 
elastic fields can also be significant or even dominant  
in determining the minimum of energy. Similarly, in 
ferroelastics which are polar or even magnetic, electric 
and magnetic field energies can contribute to the 
energy minimization. When the formation of the 
domain pattern is governed by stress fields they will be 
called mechanical or elastic domains by analogy with 
the magnetic and electric domains in ferromagnetic 
and ferroelectric materials. In this paper the words 
twin or domain and twin boundary, domain wall or 
interface will be used in a generalized sense. 

The general formalism is the energy minimization 

Wto t = W M + WE + WW + WS = minimum 

with WM = elastic energy, wE = electric energy, 
Ww = domain wall (or interface) energy and 
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Figure 1 (a) Simple lamellar twinning and (b) banded twin structure in polycrystalline materials. 

Ws = surface energy, all energies being expressed as 
energy density. 

In most ferroelectric ceramics, e.g. (BaTiO3) (BT) 
or (PbZrxTil_,.O3) (PZT) the domain twinning is such 
that the electric field energy is negligible, whereas the 
elastic energy prevails. Therefore the principle of 
energy minimization is the same as in ferroelastic 
ceramics and wE ~ 0. The surface energy is certainly 
negligible as long as the grains are not very fine, or the 
investigated samples are very thin as in transmission 
electron microscopy. 

Only one calculation of the reduction of elastic 
energy is known to the author, that published by 
Willaime and Gandais [9, 10]. They explain twinning 
for the highly complex example of exsolved alkali 
feldspar, in which there are alternating lamellae of 
more potassium-rich monoclinic feldspar and more 
sodium-rich triclinic feldspar. The slow cooling 
time of many thousand years of these minerals in 
nature [12] allows them by twinning to approach a 
certain degree of a thermodynamic equilibrium with 
respect to minimizing the internal energy. Here, 
certainly, chemical energy is involved too. A simi- 
lar kind of calculation has been proposed by the 
author for a much simpler case: the domain-splitting 
in tetragonally distorted perovskite-type ceramics 
[13, 14] in which elastic matching determines the 
equilibrium. 

2. Mechanica l  boundary condi t ions 
A slight deformation of the lattice cell by a structural 
phase transition leads to a slight deformation of the 
crystallite which is built up of the deformed lattice 
cells. This deformation, however, is more or less 
obstructed by the surroundings of the crystallite. A 
single crystal is free and can therefore in principle 
deform like the lattice cell. It need not have twins from 
the mechanical point of view. 

A crystallite (grain) in a ceramic is clamped by its 
neighbouring grains in all three dimensions. It can 
deform to some degree by cooperative motion of the 
adjacent grains. Maintaining the shape requires either 
high internal stresses or mechanical twinning which at 

least preserves the gross shape of the grain. This will 
be treated in Section 3. 

A crystallite (grain) at the surface of a ceramic body 
experiences no clamping from the surface. It therefore 
has different clamping conditions from a grain inside 
the body and will twin differently. A crystallite (grain) 
in a thin layer which is thinner than the diameter of the 
grain is clamped in two dimensions only. Such layers 
are widely used in transmission electron microscopy. 

A crystallite of a thin film on a substrate is also 
clamped in two dimensions. This clamping is more 
restricted than that of the free film, because isotropic 
expansion or contraction of the grains is no longer 
possible in the two clamping directions and the boun- 
dary energy between substrate and layer is also 
involved. 

In addition to these boundary conditions, inhomo- 
geneous internal stresses by mutual interactions 
between adjacent grains or by inhomogeneous com- 
positions, inhomogeneous cooling through the phase 
transition, composition-dependent phase transition 
temperatures and other irregularities will cause 
additional irregular twinning which is not treated in 
this paper. 

The twinning at the phase transition which (e.g. in 
the ceramic) maintains the gross shape of the grain 
may in many materials proceed only in a narrow 
temperature interval near the phase transition, in 
which the displaced atoms or the twin boundaries are 
mobile. At lower temperatures the twin configuration 
which was formed near the phase transition is either 
frozen in or subject to further matching when twin 
boundaries can be moved or generated or annihilated. 
Transmission electron microscopy reflects the true 
twin configuration of a ceramic only when this con- 
figuration is frozen in and cannot adopt the configur- 
ation appropriate to two-dimensional clamping. 

The importance of these boundary conditions for 
the twin configuration is demonstrated in Fig. 2. Fig. 
2a shows the domain pattern of well-aged BT. After 
ageing the ceramic bar was cut by a wire saw and the 
face of the cut was lapped, polished and etched. The 
pattern represents the frozen in domain configuration 

2656 



Figure 2 Representative BT domain patterns of a grain: (a) when the pattern is formed inside the ceramic body with three-dimensional 
clamping, (b) the same grain when the pattern is formed under free surface conditions. 

of a grain inside the ceramic, assuming that the 
mechanical procedure of cutting, lapping and polish- 
ing did not modify the frozen-in state. The ceramic was 
then heated for some time above the transition tem- 
perature, cooled to room temperature again, polished 
and etched. Fig. 2b is the same area as Fig. 2a (slightly 
shifted and rotated) after this intermediate step of 
detwinning. The grains at the surface have twinned 
now under the clamping condition of a grain at the 
surface. The pattern of Fig. 2b remained unchanged 
when polished, etched and photographed again three 
weeks later; thus ageing in this case did not change the 
domain pattern. 

ceramic by twinning is discussed for the example of 
the ferroelectric phase transition of BT from the cubic 
phase above about 125~ to the tetragonal phase (c-t) 
below that temperature. Atoms in the lattice cell are 
slightly shifted in this transition, which results in a 
spontaneous polarization P0 along c and a tetragonal 
deformation, called spontaneous deformation S~3, 
which is a strain tensor. In the above example the 

so = 

tensor is 

3. Two-dimensional adjustment where S~ and St 
The conservation of the shape of the crystallites in the the fictitious cubic 

& o o)  
0 S~ 0 

o o s~ 

are the relative 
lattice constant 

changes of 
ao = (a2c)l/3; 
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Figure 3 Spontaneous deformation of  a cubic grain: (a) the cube edges correspond to the crystallographic axis, (b) the cube edges correspond 
to a coordinate system rotated 45 ~ around the b axis. In (a) the stress which redeforms the grain to become cubic is indicated. 

S~ = (a  - ao ) / ao ;  Sc = (c  - a o ) / a  o. A cubic grain 
with grain size go will deform, for example as shown in 
Fig. 3a or Fig. 3b with dashed lines. The two cases 
differ only in the crystallographic orientation of the 
originally cubic grain. By compressional stress T 3 and 
tensile stress T l (as indicated in Fig. 3a) the deformed 
grain can become a cube again. High stress energies 
are necessary for this deformation. In the example of 
BaTiO 3 an elementary calculation leads to 

r ,  =  ,js: s ,  = s :  = - sa  + 

33 - Sc + Sx (1) 

which yields T 1 = 190J]lMPa and ir~ = -380f~1 
MPa and the elastic energy density 

W 1 = 2.08 • 106NtJm 3 (2a) 

In this calculation the grain is deformed by longitudinal 
stresses only (Fig. 3a). If the spontaneously deformed 
grain were in a non-distorted isotropic environment, 
according to Eshelby [15] it would homogeneously 
deform with about S 1 = S 2 ~-- - S a / 2 ;  S 3 = - S ~ / 2  

with some inhomogeneous deformation in the environ- 
ment. This effect is the mechanical analogy of the 
electric or magnetic "depolarization". The factors.fl~ 
and~l  allow for these reductions. The adjacent grains, 
however, deform spontaneously too. According to 
their orientation and deformation they statistically 
enhance or reduce the necessary strain, which may 
lead to a further variation of the factors f In the 
energy term the factor is called N 1 in order to denote 
the fact that it includes a "mechanical depolarization" 
beside the cooperative spontaneous deformation. 

Of course under such high deformation it is highly 
questionable whether the grain still has the same ferro- 
electric properties as in the free state. P0 and So were 
certainly reduced by this deformation, and changes of 
the crystal structure cannot be excluded. This indeed 
has been observed as shown below in Fig. 6. 

The calculation which leads to Equation 2a is based 
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on the following values for BT at 25 ~ C: 

c = 4.0361 • 10-~~ 

a = 3.9920 x 10-1~ a 0 = (a2c) 1/3 

E ClE! = 275X C33 = 165X C~2 = 179X 

cIE3 = 151x c~4 = 54x 

with x = 109 N m  -2. A grain like that in Fig. 3b can 
partly be redeformed by a shear. An energy density 

Wsh = 1.56 x 106NshJm -3 (2b) 

is necessary for this deformation. The grain then is not 
yet a cube, because the edge along the b axis is shorter 
than the two edges of the square at the front of the 
crystallite. An additional longitudinal deformation is 
required to make the grain cubic again. The energy for 
this deformation is calculated below (Equation 2c) to 
be w2 = 0.52N2 Jm -3. 

The energy of the electric dipole field of the grain is 
assumed to be negligible due to the compensation of 
the polarization charge at the grain boundaries by free 
charge carriers, e.g. by inversion layers if the voltage 
between the boundaries is larger than the band gap. 
The grain as shown in Fig. 3b reduces the high elastic 
energy by twinning as shown in Fig. 4. In two dimen- 
sions its gross shape is now a square g~ x gl, the 
third side remaining g~. Now a compressive stress 
T I  = Ts = - - 9 5 f 2 1  MPa and a tensile stress ~ = 
190~2MPa are required to deform the grain to 
become cubic with the exception of  the serration on 
two sides. The elastic energy for this deformation is 
about 

W 2 = 0.52 x 106N2Jm -3 (2c) 

The calculation is based on longitudinal deformation 
only as in the example given above (Equation I). The 
elastic constants of the rotated system were used. As 
long as the twin walls are mobile the grain can accept 
any shape between the rhombus of Fig. 3b and the 
rhombus with the other face diagonal. 
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Figure 4 The spontaneous deformation as shown in Fig. 3b is 
reduced by twinning, Serration appears at the grain boundary. 
Homogeneous stresses T as indicated can restore the gross cubic 
shape. 

If the wall motion is reversible then it will contrib- 
ute to the elastic and/or dielectric behaviour of the 
ceramic [14, 16, 17]. In twinned metals this elastic 
effect was observed first by Worrel [18] and Zener [19] 
and later by many other authors (e.g. [20]). Superelas- 
ticity is based on such reversible motions [7, 20]. 

In BT the twin boundaries are { 1 1 0} planes of  the 
pseudo-cubic lattice. By this kind of twinning no polar- 
ization charge appears at the interfaces and therefore 
the electric field energy is zero. Nevertheless the twin 
boundary or domain wall has a surface energy per unit 
area a90. 

The twin width d in the arrangement of Fig. 4 is 
governed by the minimum of the total energy density, 
which is the sum of elastic energy and domain wall 
energy. The elastic energy is the sum of w2 and the 
strain energy caused by the serration at the grain 
boundaries. 

To estimate this energy we suppose the grain to be 
embedded in an isotropic elastic matrix, which has the 
same representative elastic constant c as the grain. If  
the boundary between the twin lamellae and the 
embedding medium were cleft we would find an over- 
lapping region in the lower part and a wedge-shaped 
slit in the upper part between the two as shown in Fig. 
5a. In the unsplit boundary (Fig. 5b) we find compres- 
sional stress c in the lower half and tensile stress t in 
the upper half of the boundary. Instead of solving the 
differential equation for this complicated elastic prob- 
lem, the elastic energy in this region is estimated by a 
simple model. 

The longitudinal strain in this model has only the 
S,-,- component which decreases exponentially toward 
both sides of  the boundary, with a penetration depth 
d/2: 

Sxx  ~- S 1 e -21x'l/d (3a) 

Si is chosen such that the total displacement along a 
path f r o m x  = - o o  t o x  = +oo at cons tan ty 'cor~  
responds to the width of the slit with respect to the 
overlapping at this y'  site: 

f l lY '  
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Figure 5 Deformation at a grain boundary: (a) a twin and its 
adjacent embedding medium if cleft, (b) compressional (c) and 
tensile (t) stress regions in the unclefl boundary. 

The local energy density along a path parallel to the 
S-axis then is 

w~ = �89 c U e 4lx'l/d 

with the representative elastic constant c. To get the 
total energy per unit length h (which is perpendicular 
to the plane of drawing) we have to integrate along x' 
from - oc to + oo and along y from - d / 2  to + d/2: 

W~ 1 Cfl~[+d/2 ,+  ~ y,~ 
h - 2 -~ J-d/2 J-~ - e 41x'l/d dx' dy' 

- L cfi~ d2 (4) 

The elastic energy in this part of the boundary, which 
is indicated by the cylinder in Fig. 4, is 

W~ = kcfl~d2g (5) 

Any other simplified or correct mathematical treat- 
ment of the elastic energy for smoothing the rippled 
deformation leads to Equation 5 with other factors k 
and c which depend on the model. The above crude 
model gives with kc = Q~/48 an order-of-magnitude 
estimate. By comparison with measured results a 
matching of kc leads to values around 0.5 x 
109Nm 2 ~ kc which is about 6 times smaller than 
qj/48 as estimated by the model (c1~ ~ 1.5 x 
10 ~ N m  2 as for ceramics). 

Since we have g/d deformations on both sides of the 
cube the total energy stored there is WsR~ = 2W~g/d. 
The energy density WsR ' of  the grain becomes 

WSR ' = 2 k c f i ~ d / g  (6) 

This inhomogeneous elastic energy is concentrated in 
the boundary region within a layer of thickness d, and 
with maximal strain values +fi~/2 at x'  = 0, y' = 
+_d/2. 

The total energy density caused by the surface 
energy of the domain walls is 

Ww~o = a~o/d (7) 

if a90 is the domain wall energy per unit area. The 
minimum condition for the sum of Equations 2, 6 and 
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Figure 6 Domain width of BT as a function of grain 
size measured with (a) light microscopy and (0) elec- 
tron microscopy. The spontaneous strain is strongly 
reduced at small grain size and the crystallographic 
structure is no longer unique in this region with g < 
1 ~tm. 

7 leads to the equilibrium domain width d (w 2 is inde- 
pendent of d) given by 

( o.90g ~,/2 d = \ ~ )  (8) 

and to the minimum energy 

Wminl = W 2 + (9) 

Here the first term represents the homogeneous stress 
energy in the grain (Equation 2c); the second term is 
half domain-wall and half elastic energy in the ser- 
rated boundary. 

An interesting result is the dependence of the twin 
width d on the grain size d oc gl/2. This relationship is 
not restricted to BaTiO3. It holds for all kinds of 
simple lamellar twinning in metals and ceramics in 
which the twin wall energy o- and the elastic defor- 
mation energy WsR, determine the minimum. It does 
not depend on the kind of  interface which separates 
the twins. Nature certainly will favour twin boun- 
daries with low energies. Plastic deformation as 
known from metals will possibly modify the results. 
Fig. 4 shows clearly that the shape adjustment by 
simple lamellar twinning is in two dimensions only. 
The relationship of  Equation 8 has indeed been con- 
firmed in fine-grained BT ceramics [14] for grain sizes 
between 1 and 10#m as shown in Fig. 6. 

If  the grain size is smaller than about 1 #m a change 
of the crystallographic structure of  BT and a reduc- 
tion of the spontaneous deformation are observed. 
Then both 0-90 and 3~ are dependent on the structure 
and.will lead to a modified equilibrium. In addition 
the electric energy and the surface energy of the very 
fine grains can presumably no longer be neglected. 

It is interesting to extrapolate Equation 8 to that 
grain size gcr~tl which is identical with the domain 
width d, discarding the physical effects cited above for 
fine grains: 

G90 (1 0) 
gcrit I - -  2kc~ 2 

Below this fictitious grain size no domain twinning 
would occur. The grain does not yet contain enough 
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elastic energy for an energy-reducing splitting by a 
wall with energy 0-90. This critical grain size finds a 
very simple explanation as demonstrated in Fig. 7. 
With homogeneous stress in the grain, the absolute 
stress energy increases with grain size oc g3. Any kind 
of domain wall energy increases oc g2. Only at or 
above the point of intersection of  the two curves (Fig. 
7a) is there enough energy to create a twin. The second 
term in Equation 9 which describes the twinning 
energy then becomes 

Wcritl i 4kcfi~ (1 1) 

This energy should be comparable with the defor- 
mation energy as given by Equation 2b. If the defor- 
mation factor is tentatively Nsh ~ 0.1 3 then from this 
comparison 

NSh WSh ~ Wcritl 

kc can be estimated for BT to be 

kc ~ 0.5 • 109Nm --2 (12) 

withfll ~ (c/a) - 1  ~ So - Sa = 1.1 • 10 -2 . 
A comparision of Equation 8 with the measured 

values of grain size and domain width [14] (see Fig. 6), 
e.g. g = 10pro and d = 0.65/zm, leads to a domain 
wall energy a90 = 5.1 x 10-3 jm -2 assuming kc 
as given by Equation 12. This value for 0-90 is near 
that calculated by Zhirnov [21] (690 = 2 to 4 x 
10-3jm -2) and by Bulaewski [22] (a90 = 3.4 • 
10-3 jm 2); it is lower than that given by Kittel [23] 
(0-90 ~ 10-1Jm-2) . This agreement and the observed 
d oc g112 dependence are a confirmation of the model. 
The fictitious critical grain size according to Equation 
10 is then gcri~, ~ 40rim. 

The two-dimensional grain adjustment as described 
above can occur in cubic-tetragonal transitions of fine- 
grained ceramics (coarse grains are discussed in the next 
Section), in thin films where clamping in the third direc- 
tion is not required, or in the tetragonal-orthorhombic 
transition of the high-To superconducting ceramics. 
Figs 8 and 9 show SEM photographs and light micro- 
graphs of fine- and coarse-grained BT and the high-To 
superconductor YBa2Cu307_ ~. In BT the domain 
configuration which is established at the transition 
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Figure 7 (a) The homogeneous elastic 
energy in the grain increases with g3, 
the domain wall or interface energy 
increases with g~. The intersection of 
both curves determines the lower limit 
for gcrit- (b) Dependence of the elastic 
energy density w on grain size g (sche- 
matically). 

temperature of about 125~ is very mobile some l0 K 
below T c [24]. Below 100~ however, it becomes 
almost frozen in and can vary only slowly or only if 
stresses larger than a coercive stress modify the con- 
figuration towards lower energy. 

In YBa=Cu307_0, the phase transformation at about 

700 to 600 ~ C, which is t-o, leads with oxygen diffusion 
[8, 9] to an adjustment by twinning of the plate-like 
grains in the plane perpendicular to c. The diameter of 
the plate-like grains corresponds to our grain size g in 
the preceding discussion. The mobility at these tempera- 
tures is sufficient to establish the domain configuration. 

Figure 8 (a) Scanning electron micrograph of fine-grained BT. (b) Light micrograph of coarse-grained BT. 
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Figure 9 (a) Scanning electron micrograph of fine-grained YBaCuO. (b) Scanning electron micrograph of medium-grained YBaCuO. 
(c) Polarized light micrograph of coarse-grained YBaCuO. 
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Figure 10 (a) Domain configuration (~-type) in 
coarse-grained BT ceramics. Banded stacks S~, S, 
with critical width g,, separated by interfaces I 
appear at the surface. Inside the cube there is no 
polarization charge. (b) The interfaces I are alter- 
nating stripes of 90 ~ and 180 ~ domain walls. 

Thus  with slow cooling a certain o r tho rhombic  state 
f rom 500~ or  higher is frozen in. Fur ther  chemical 
reaction with oxygen combined with some variat ion o f  
the b/a value [8, 9] will not  change the gross domain  
configuration. Instead there may  be a generation o f  
finer domains  down to a width o f  3 0 n m  [25, 26] 
depending on local stress situations. This irregular 
domain-twinning does not  fit the above discussion. It is 
not  clear whether the very fine domains seen with T E M  
in thin layers exist in three-dimensionally clamped 
ceramic grains. 

4. Three-dimensional adjustment 
The c - t  transition, as for instance in BT, allows all 
{1 1 0} planes to become domain  walls. Therefore a 
further stress relief by another  kind of  interface which 
brings relief in the third dimension is possible. 

In contrast  YBa2Cu307 6 allows twinning at (1 1 0) 
and (1 TO) pseudo-te t ragonal  planes only with low 
energy. There seems to be almost  no twinning which 
effects grain adjustment  in the c direction. Shrinking 
in the c direction is therefore not  compensated  by 
twinning. Microcracks  parallel to (0 0 1) as revealed in 
Fig. 9b are a consequence.  

Coarse-grained BT ceramic has the banded struc- 
ture shown in Figs 8b and 2a. Its domain  configur- 
at ion has been determined [13]. Fig. 10 schematically 
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Figure 11 The surface of the grain of Fig. 10a seen from the z 
direction, with idealized cleavage in one of the interfaces. The small 
circles represent a characteristic region of elastic energy as explained 
in Fig. 12. The large circle indicates a similar type of elastic energy 
as shown in Fig. 4 which can be treated with Equation 5 ifdand #~ 
are replaced by g~ and #4- 

shows the c~-type o f  this twinning. New interfaces I 
consisting of  alternating 90 ~ walls and 180 ~ walls 
between stacks Sl and $2 of  simple twin lamellae allow 
a grain adjustment  in the third dimension, and inhibit 
polar izat ion fields. The/?- type  twinning with polariz- 
at ion fields [13] will not  be discussed here. The grain 
is now a cube if those twins which meet at the interface 
I with 180 ~ walls have a width o f  d/2 compared  with 
the twins o f  width d which meet at the 90 ~ walls o f  the 
interface. 

The interface I in addit ion to its normal  d o m a i n  
wall energy 0-90 and a~80 is a carrier of  elastic energy 
which results f rom the deformat ion  as discussed in 
Section 3. Fig. 11 represents the grain o f  Fig. 10a seen 
f rom the z direction, if it were split at one o f  the 
interfaces. The deformat ion  at the two smaller circles 
o f  Fig. 11 is repeated in Fig. 12. A geometrical analysis 

1 . 2 leads to/?2 = x/?t,/33 = X/?l and for the deformat ion  
at the boundary  (large circle in Fig. 10) one gets 

1 
/?4 = 

By using these angles the elastic energy of  the inter- 
face can now be estimated with the same method as 
used in Section 3. With  Equat ion  4 the elastic interface 
energy per unit area is 

8(2)'/2 k, C 1 / ? ~ d  (13) 
a, - 2 ~  

Compared  with this energy the domain  wall contri- 
butions 0-9o and a~s0 are small enough to be neglected. 
k~ and c, certainly differ f rom k and c since the geo- 
metrical structure o f  the deformat ion in the interface 

d 

Figure 12The small circled regions of Fig. II, shown in the idealized 
cleft state. 
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Figure 13 Scanning electron micrograph of PZT. 

and the elastic constants are somewhat different to 
that of  the simple model which leads to Equation 5. 

The serrated grain boundary (large circle in Fig. 11) 
with serration period gc is smoothed by elastic defor- 
mation of the grain and the embedding medium. The 
elastic energy for smoothing is stored in a layer of 
thickness gc on both sides of the grain boundary. The 

�9 energy density of  the grain of volume g3 is then 

2kcfl~g~ 
WSR2 -- 9g (14) 

Grains which are larger than gc allow in addition a 
cooperation of grains by serrated edges at the grain 
boundary. This can be seen in Fig. 8b as bands which 
extend over many grains. The effect will decrease the 
energy given by Equation 14. Since it cannot easily 
be quantified the further calculation is based on 
Equation 14. 

The calculation of the minimum of  the sum of both 
energy densities (Equation 13) with Ww~ = aj/g~ and 
Equation 14, 

Wwi + WSR2 = minimum = Wmin2 (15) 

leads to the interface distance go. Furthermore the 
total energy which is the minimum of Equation 15 and 
the domain wall energy (Equation 7), 

4 a90 Wmin2 -1- 3 d - minimum (16) 

has to be minimized with respect to d. This results in 
the equilibrium values d(g)  and g~(g) and the total 
energy density Wtotmin: 

( 27o920g "~1/3 
d = \ 2 , / 2 ~ l k j ~ l k C ,  ] d ~ g,/3 (17) 

( 8(2)'/2 k, c, r ) 1/3 
g~ = (kc)2/~ gc ~ g2/3 (18) 

4 2l /2klcl  c ~ 9 o  
Wt~ 3 Wtotmin OC g- ~/3 

(19) 
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d(g)  as given by Equation 17 is roughly in agreement 
with the experimental results in the banded structure 
[14]. Equation 18 gives the order of magnitude of 
the width of the bands of known domain patterns. 
Although gc values have never been systematically 
investigated, experience tells us that the width of the 
bands go in BT varies between 5 and 20 #m in unpolar- 
ized BT ceramics. According to experience gc seems to 
be not so strongly dependent on grain size as given b y  
Equation 18. The number of  bands per grain is not 
very large; in addition, statistical scatter resulting 
from individual sites and shapes and orientations of 
the grains and of  the embedding situation and from 
different cooling procedures may be the origin of de- 
viations from Equation 18. 

The critical grain size gcrit 2 above which three- 
dimensional adjustment occurs (Fig. 7) is derived 
from Equation 18 with gc = g = gcrit~" 

8(2)1/2 kl Cl 090 
gcrit2 --  (kc)2fl~ (20)  

With kc  = 0.5 x 109jm -3 as before and k~cl = 
2.5  • 1 0 9 j m  -3 ,  o-90 = 5.1 • 10-3jm -2 and /~l = 

1.1 x 10 2 this critical grain size is about 4.7#m. The 
domain width for g = 100#m from Equation 17 is 
d = 1.4#m. The width of the bands for g = 100/~m 
from Equation 18 is g~ = 36#m,  which certainly is 
too large. The discrepancy is certainly not only caused 
by the incorrectness of almost all parameters in 
Equation 20. The model has to be refined in order to 
give better agreement in some details. 

The total energy at the critical grain size gcrit2 is 

w, ri~ ~ = 2 kc[3~ (21) 

This energy density again can be compared with 
Equation 2c and leads to the factor N~ ~ 0.07 for the 
cooperation of adjacent grains and for mechanical 
depolarization. The accuracy of this figure is certainly 
low. 

Similar banded structures (Fig. 13) are seen in lead- 
zirconate-titanate (PZT) which has a c-t  structural 



Figure 14 Thinned region of a coarse-grained BT ceramic (polarized light micrograph). 

phase transition like BT at about 400 ~ C. The observed 
domain width d and the width of the bands gc are 
about 3 to 10 times smaller than those of BT. The 
three-times larger spontaneous polarization in PZT 
and the smaller grain size (~10/~m) point with 
Equations 17 and 18 to this reduction of d and g~. 
Nothing, however, is known about the energy 0-90 of 
the domain walls in PZT. 

The domain patterns of orthorhombic or rhombo- 
hedral BT or other perovskites are not well known. 
Various simple lamellar regions exist in each grain. It 
is unknown whether a regular kind of interface - 
planar or non-planar - exists for three-dimensional 
adjustment. 

Fig. 14 shows a light micrograph of a coarse- 
grained sample of BT which was thinned by ion 
bombardment for transmission electron microscopy. 
As mentioned before, thin layers require a two-dimen- 
sional adjustment only. The sample shown in Fig. 14 
indeed shows only simple lamellar twinning although 
it is coarse-grained. The surface is damaged by the ion 
etching. 

5. Irregular d o m a i n  s t r u c t u r e s  
Most single crystals contain some 90 ~ domain twin- 
ning (in addition to 180 ~ twinning which is not of 
interest here) unless the domain walls are removed by 
electric and/or elastic fields. This at a first sight con- 
tradicts the expectations. If  we realize, however, that 
even a perfect crystal does not cool homogeneously 
through the transition temperature and therefore 
develops internal stresses, we can understand the 
domain formation as a process for the reduction of 
elastic energy. In addition, different types of crys- 
tallographic defect create stress fields which can be 
reduced by twinning. 

With transmission electron microscopy [25-29] 
much finer twins, which do not fit the considerations 
of the preceding sections are observed in ceramics and 

in single crystals. The micrographs which are pub- 
lished show clearly that these fine domains are not a 
regular substructure of the domain pattern described 
above. One can assume that these twins are caused by 
local and inhomogeneous stresses which can have 
different origins. Some of these have already been 
mentioned: inhomogeneous stresses by adjacent 
grains, inhomogeneous cooling, inhomogeneous com- 
position, dislocations. It is certainly a challenge to 
understand these irregular configurations. 

The spontaneous strain furthermore increases with 
decreasing temperature. Thus a domain configuration 
which is frozen in at a higher temperature and which 
gives stress relief at this temperature is under new 
stress at lower temperatures. There is not enough 
knowledge about domain wall mobility and domain 
nucleation to understand how further stress relief at 
temperatures much below the transition proceeds, and 
whether the fine domains are a product of this process. 

6. Conclusion 
Twinning in BaTiO3 ceramics effects relief of stress 
which has its origin in a structural phase transition. It 
proceeds in two steps: in fine-grained ceramic the 
deformed grains adjust in two dimensions by simple 
lamellar twinning, in coarse-grained ceramic a second 
kind of twinning with more complicated interfaces 
allows grain adjustment in the third dimension as well. 

The calculation of the average twin size and the 
width of the bands is based on a simplified stress 
distribution near the serrated edges. It leads to results 
which agree roughly with experience. Since the model 
applied here is more general it will be applicable also 
to other materials than ferroelectric ceramics: gener- 
ally to those in which the elastic energy has to be 
reduced and which can form interfaces with energies 
low enough to reduce the overall elastic energy. The 
model is restricted to polycrystalline materials in 
which the grains are clamped or partly clamped by 
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adjacent grains. In thin films only the first step of 
twinning is necessary since the grains are clamped in 
the plane of the film only. 
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